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Discussion of the 
Quasi Elastic Scattering of Neutrons 
in Incoherent Liquids 
S. N. PUROHlTt 
Akticbolagct Atomenergi 
Studsvik, Sweden 

Reoeived November 8,1966 

Abstract-A critical discussion of the quasi-elaatic scattering of neutrons by in- 
coherent (hydrogenous) liquid8 is presented. using the line shape expression a 
comparative diacuesion of aeveral phenomenological modele has been undertaken. 
Extension of the Singwi-Sjolander zero phonon expreaeion, for the jump-diffusion 
model, 80 as to include the one phonon expression haa dm been given. For a delayed 
diffusion model a complete treatment of S(K,  o) ia preaented. Along the linea of the 
macroscopic diffusion cooling, a microscopic Wuaion cooling effect in fluida ie 
speculated. 

ANALYSIS OF THE QUASI ELASTIC SCATTERING OF NEUTRONS IN 
HYDROGENOUS LIQUIDS 

1. Introduction 

In recent years extensive experimental information on the scattering 
of neutrons in hydrogenous liquids has been The ana- 
lysis of these experiments requires the detailed understanding of the 
incoherent scattering of neutrons, as the hydrogen atom is the main 
scatterer. For the sake of simplicity one may divide the dynamical 
modes in hydrogenous liquids in three broad categories. Them depend 
upon the magnitude of the energy transfer in the scattering process. 
First, the high energy transfer modes which involve the intramolecular 
vibrations. It is well known that the cold neutron scattering experiments 
do not provide the direct information about these modes. Due to the 
lack of neutron intensity the energy gain processes of the magnitude of 
these modes have not yet been studied. However these modea are pre- 
sently being investigated by the energy loss method using the Rensselaer 
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14 S. N. PUROKIT 

Polytechnic Institute linear accelerator. 7 Secondly, the medium energy 
transfer modes represented by the hindered rotations. The cold neutron 
scattering experiments have given the most valuable information about 
the structure of these modes. Thirdly, the low energy transfer modes, 
which cover the diffusive and hindered translational modes. The infor- 
mation about the diffusion of atoms in liquids has been obtained by 
analysing the quasi-elastic scattering of neutrons. 

The analysis of the neutron scattering data in hydrogenous liquids 
would require the theory of the liquid state. At present there does not 
exist an adequate theory which can be employed in the analysis of these 
experiments. Attempts have been made by several authors to formulate 
phenomenological models to study the quasi-elastic scattering of neutrons. 
In this study we shall be primarily concerned with the critical discussion 
of this problem. 

I n  section 2, we present a general formalism for studying the incoherent 
scattering of neutrons. The scattering law S(K,  o) is expressed in terms 
of a generalized diffusion coefficient D(K, w). The latter is related to the 
response function corresponding to the fluctuations in the local density. 
This representation may be useful for a comparative study of several 
phenomenological models employed in the analysis of the quasi elastic 
scattering of neutrons. 

We discuss in the third section three types of phenomenological models 

(1) The diffusion model in the form applied by V i n e ~ a r d . ~  

(2) The jump diffusion model of Singwi and Sjolander.5 A variation 
of this model has been discussed by Oskotakii6 Rahman, Singwi 
and Sj61ander7 have formulated a stochastic model Using the 
Langevin equation of motion to describe the damped harmonic 
vibrations and also diffusive modes. 

(3) The single relaxation time models. Ruijgrok* and Kadanoff and 
Martins modified the simple diffusion model so aa to take into 
account the reversible character of the dynamical motion by intro- 
ducing a single relaxation time. On the other hand, N e h  and 
Ghataklo and Gibbs and FerzigeP introduced a single relaxation 
time toa-implify the collision integral in the linearised Boltzmann 
equation. 

t See the recent measurements of G. J. Kirouec et al, Nuel. Sci. Eng. 26, 300 
(1966.) 
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THE QUASI ELASTIC SCAWITERLNQ O F  NEUTaONS 15 

In section 4, we present an extension of the Singwi-Sjdander expres- 
sion for S(K,  a), so as to include the contribution of one phonon term 
explicitly. Singwi and Sjdander have treated only the zero phonon term. 
The section 6 deals with the treatment of a delayed diffueion model. We 
assume that for times greater than the correlation time t, the diffusion 
process sets in. For times smaller than t, we have solid like behavior. 

An attempt has also been made to present a qualitative discussion of 
the temperature dependent quasi elastic scattering results in terms of 
the diffusion cooling phenomenon on a microscopic scale. 

2. Neutron Scattering Formalism 

According to Van Hovel2 the scattering law, S(K,  o), a function of 
momentum tranefer d - K and energy transfer bo in the neutron scattering 
process, is completely determined by the dynamics of atomic motions in 
the system under consideration. For an incoherent scatterer, such as a 
hydrogenous system, we write S(K,  w )  in the form of the Fourier trans- 
form of the intermediate scattering function, F,(K, t ) .  

+a, 

exp - iot F,(K, t )  dt 

-m 

(2) 
and F8(K,  t )  = (exp - iK - -  * R(0)  exp i_K g(t)). 

R(t) is the position vector of the scattering nucleus at time t in the 
Heisenberg representation, that is 

R(t)  = exp iHt R(0) exp - iHt. (3) 

In the above equation H represents the Hamiltionian of the system. 
The bmcket ( ) in the expression of Fs(K, t )  represents the quantum 
statistical average. For the harmonic vibrations in a crystal S(K,  o) has 
been extensively discussed in the literature. See  the recent review article 
of Waller.13 One may also refer to the review article of Glauber14 for 
the theory of neutron scattering by statistical media-gases and liquids. 

I n  this study we shall express S(K, o) in the form given by Zwanzig15 
and Kadanoff and Martin.s We adopt the notation of Zwanzig. 

Let UB define the Fourier transform (in space) of the density function. 

e(&, t )  = exp i_K. R( t ) .  (4) 
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16 S. N. PUROHIT 

Therefore, +- 
S(K,  O )  = - exp - iwt(e( --K, - 0) e (K ,  - t ) )  dt . (5) 

--OD 

After taking time derivatives, we obtain 
+-a0 

-00 

Derivation of the above expression depends upon the application of 
the following identity for the operators A and B based upon the time 
invariance property. 

(4-5, a) B(K, B,> = <4-gl, a + y )  B(_R, B + y ) )  - (7) 

From Eq. (6) one obtains the exact result for the second energy trans- 
fer moment. 

We shall now express S(K,  w )  in terms of the generalized diffusion 
coefficient tensor D(K, 0). From the law of the conservation of current 
density or the equation of continuity, we obtain 

&(g; t )  = iK  - * - -  j ( K ,  t ) .  (9) 

j ( K ,  - t )  is the Fourier transformed current density. Therefore, 

--m 

The above representation is an alternate form of expressing S(K,  w) .  
Let us define the components of the diffusion coefficient tensor follow- 

1 
kT 

ing Bubo18 with B = -. 

The above expreesion,is the generalization of the well known result for 
the diffusion coefficient which is obtained by taking the limit of DJK,  o) 
f o r K + O a n d w + O .  
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THE QUASI ELASTIC SCATTERINQ OF NEUTRONS 17 

Let us write 8 

exp - iwt pJK, t )  &. 

0 

The response function pFv(K, t )  is the A-integral of Eq. (11). As 
q,,,(g, t )  = $(g, - t )  due to the invaria,nce of the Heisenberg equation 
of motion under the transformation t -+ -t and i --t -i, therefore, we 
obtain following Kubo or Montr01l.l~ 

+W 

exp - iwt(j,( s (1 - exp - /?ah) 
2Bhw 

Re DJK,  w) = 

-co 

From Eqs. (10) and (13) follows 

Alternatively, one may also express S ( K ,  w) in terms of Im A ( K ,  w )  - 
the Fourier transform of Im Q(r, - t ) .  

S(R,  w) = 1 + Coth --oh Im A ( K ,  w).  (15) ( ”> 2 

The above expression is a consequence of the following detailed balance 

(16) 
condition S(K ,  w) = exp , 4 h  S(-K,  -0) 

which implies a definite connection between real and imaginary parts of 
the correlation function. 

In the generalized c&e this relation constitutes the Fluctuation- 
dissipation theorem of the irreversible statistical mechanics. See Scho- 
fieldls, Glauber14 and others. 

According to Van Hovel0, Im A ( K ,  o) is the response to the fluctua- 
tions in the density n(r, t )  of the system caused by the transfer of mo- 
mentum by a neutron during the scattering process. These fluctuations 
get dissipated in Merent  dynamical modes. Mathematically, 

dr dt exp i ( K  . r - wt)  Im G(r, t )  . (17) Im A ( K ,  w) = - 

n ( r , t ) = p o - ( T ) i Q o  2~cah2 dt‘ImCl(r-rr , ; t - t ’ ) .  (18) 

- _  2 n -  ’ s  
t 

-m 
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18 5. N. P W O H I T  

eo is the equilibrium density and the second term describes the fluctua- 

Ruijgork* and EgelstaP have employed the above expression Eq. (15) 
tions from the equilibrium value. 

in the interpretation of neutron scattering experiments. 

Discussion of Im A ( K ,  w )  and Re D(K,  o) 
I n  order to determine Im A ( K ,  w )  or Re D ( K ,  w )  one has to solve the 

dynamical problem for liquids, which is yet not possible. I n  the absence 
of the detailed knowledge of the structure of liquid one can only depend 
upon the phenomenological models. Several such models which describe 
the slow space-time variation in current or density have been formulated. 

For the discussion of the quasi-elastic scattering it may be adequate to 

As a matter of fact the above expression is quite general in describing 
the line shape. wo defines the peak position and I', when independent of 
w ,  gives the width of the line and describes the damping phenomenon. 
H(R) is given by the initial condition. For the quasielastic scattering 
line coo = 0,  therefore, we can also write Eq. (19) as: 

ImA(K,w) =- --- 
H E ) [ i w y r  iw -r I. 

The first term in the above expression gives the aingularities of 
Im A ( K ,  w )  function in the w-plane. These may be simple poles or other 
kinds of singularities. We shall employ the above formalism to discuss 
various phenomenological models. 

One may attempt to give the limiting behavior of Re D(K, w )  function. 

(i) SmaU K and s 4  w 

may replace Re D(R,  w )  by the diffusion coefficient. 
I f  we expand Re D(K,  w )  about K and w and take the limit, then we 

Re D(k,  w) = D(0,O) = D .  

(LtK+O and w+O)  

In  the same limit, S(K ,  w )  according to Eq. (14) is given by 

DK2 
zw2 

S(R,  w )  = -. 
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THE QUASI ELASTIC SCATTERJNQ OF NEUTRONS 19 

The above result follows from the diffusion model which describes the 
slow space and time variation of QS(r, t )  function or S(K, o) in the small 
K and o range. 

(ii) SmaU K 
If we consider the small K limit and replace Re D ( K ,  w) by Re D(0, o) 

or D ( o )  a frequency dependent function-the frequency spectrum of 
current or velocity correlation function then 

(23) 
/?hKz D ( o )  

nw(1 - exp - pwh) 
S(K,  o) = 

One would recognize this as the one phonon expression for the harmo- 
nic vibrations in a solid. In the limit of small K this is a general result 
well known in the literature. 

(iii) Arbitrary K and w 
For arbitrary K and o one must employ Eq. (13) to obtain Re DJK,  o), 

which means that one must solve the dynamical problem and obtain the 
current density or j (K,  t )  it9 Fourier transform. In the next section, we 
describe several phe&menological modeb which have been formulated 
to obtain S(K, a). 

3. Phenomenological Models 

We discuss various phenomenological models which have been employ- 
ed in the study of the quasi-elastic scattering of neutrons in liquids. 

(i) D i @ h n  mode2 
As discussed by Vineyard4 and others this model describes the slow 

space and time variation of the density of diffusing atoms in the hydro- 
dynamic region. It is easy to establish that 

T ( K ,  o) = DK2 (24) 

and 
j(K, t )  = --i DK e(K, t )  - - -  

DK2 
n{02 + (DKz)2} 

S ( K ,  w )  = 

The pole of the response function Im A ( K ,  w) occurs a t  io = - D P .  
This result characterizes the diffusive mode. A plot of r versus A? gives a 
straight line. The slope of this line gives the diffuElion coefficient D. 
2* 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



20 s. N. PUaOHIT 

Experimental results on the hydrogenous liquids have definitely 
established that the plot of r versus Kz is not a straight line. The devia- 
tion from the straight line increases with the increase in K2.  As shown by 
the experiments of Larsson and Dahlborg21 this deviation increases with 
the decrease in temperature. 

The narrowing of the quasi-elastic peak with the increase in K 2  and 
decrease in the temperature have also.opened up the possibility of study- 
ing the kinetic regime in liquids. 

( i i )  Jump di@&on d of Sing& and Sjohnde+ 
I n  this model it is assumed that an atom vibrates about its mean posi- 

tion for a period to as in a solid and then diffuses for a period of z,. If 
we assume zo 9 tl then the diffusion process is instantaneous and one 
may consider it a jump diffusion model. For z1 9 zo this model reduces 
to the pure diffusion case discussed above. 

For zo 9 zl, the damping factor r ( K ,  o) and S(K ,  o) for the zero 
phonon case are given by the following expressions. 

In  the above expressions D and 2 W are the &sion coefficient and 

is greater than 
1 

Assuming that the “neutron observation time” - 
DK2 

the Debye-Waller factor respectively. 

the relaxation time to and also 2 W is small we may approximate 

exp - 2 W M (1 - Kz?) (2 is the zero point mean square displacement) 
(29) 
(30) (1  -+ K2Dto) -l w (1 - BK2t,  + D2K4<). 

Therefore, from Eq. (27) 

T ( K ,  (0) = DK2 (1 + $) - D2KeC, (1 + &) . (31) 

Deviation from the simple diffusion case is governed by the K 4  term, 
which has a coefficient involving the period of vibration to. 
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THE QUASI ELASTIC SCATTERING OF NEUTRONS 21 

Additional studies involving the combination of diffusive and vibratory 
modes have been undertaken by Oskotskiis, Chudley and Elliot's and 
Rahman, Singwi and Sjiilander.' The model of Rahman et al. has been 
formulated using the Langevin equation of motion for t,he vibratory and 
diffusive modes. This model involves three parameters which describe 
the damping of vibratory modes and the cut off frequencies for the diffu- 
sive and vibratory modes. In  the case of diffusive modes the cut off 
frequency characterizes the delay time for the setting in of these modes. 
It is not possible to give F(K,  o) for this model in a simple form as the 
expression for S ( K ,  o) is quite involved due to the presence of the 
Langevin width function in the time integral. 

(iii) Single relazation time models 

Ruijgroke and Kadanoff and Martin9 modified the -on model in 
order to take into account the short time reversible behavior and also to 
satisfy the moments' theorems. In  this model it has been assumed that 
the response of the current lags behind the rapid fluctuations in the 
density. We write 

1 

at z 
t ,  = - - [j(_R, t )  + i D_K e(K, t ) ]  . (32) 

z is the relaxation time beyond which the diffusion process is important. 
Introducing the above result in the equation of continui9 Eq. (9) we 
obtain 

[$ + +(; + DK2) ]e (K ,  - t )  = 0 for t > 0. (33) 

It is telegrapher's wave equation which also describes the damped 
sound wave. Derivation of this equation from the Boltzmann equation 
in the caae of the neutron transport problem has been given by Wein- 
berg and Wigner." 

On taking the Laplace transform we obtain 

DK2 
(1 + iwz) 

r ( K ,  0) = 

and 
1 DK2 

IG I I - 2  + Dz(,, - $)l' S ( K ,  0) = - (35) 
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22 9. N. PUROHIT 

In this case r ( K ,  w) is a function of w. However, if we assume that for 

iw = -DKZ (Diffusion Approximation) (36) small w 

then DKa 
r ( K ,  w) = 

(1 - O R )  
(37) 

If the neutron observation time l/DKa is greater than the relaxation 
time z i.e. 1 >> DK% then the above expression reduces to the familiar 
diffusion theory result. In this approximation, 

r ( K ,  w) w D P ( 1  + DK2t). (38) 

It is of interest to note that this model gives the deviation of r Venus 
Kz plot from the straight line in the opposite direction to the result of 
Singwi and Sj6lander. Compare equations (31) and (38). One therefore 
may conclude that the relaxation times introduced in Eqs. 31 and 38 
have different physical interpretations. The former describes the “energy 
transient” and the latter perhaps the “current transient”. 

( i v )  Egektars rrwdi/katkmm 

Egelstaff has proposed the following modification of Eq. (33) 

($ at 
(39) 

J is a complex function of K and w. From the above equation we 
obtain 

Egelstaff assumes J to be a complex function of K and w. I f  we now 
LO 1 

that - = DKa and - = z then we obtain the =me expression 
J J 

for r ( K ,  W) as the single relaxation time model discussed in the previous 
section. 

4. Extension of the Singwi-Sjolander Zero Phonon Resiilt 
The jump diffusion model of Singwi and Sjolande@ has been extensi- 

vely employed in the analysis of the quasi-elastic scattering of neutrons 
in hydrogenous liquids by Larsson and his group3 Singwi and Sjdander 
gave the zero phonon differential scattering cross section. We have 
extended this result so as to include the contribution of one phonon term 
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23 

explicitly. Let u8 write S(K,  o) as a 8um of the zero phonon (xo) and 

1 one phonon kl) terms. 

!l'HE QUASI ELASTIC7 S C A T T F Q  OF NEUTILONS 

S ( K  = - [ X O  + X l l .  (41) 
Id 

Uaing Eq. (11) of the Singwi-Sj6lander papefl one obtaim the following 
expreaaions for xo and xl. The former has been given by Singwi and 

where I, = b - ~ 2 t , t ,  

b = u - exp - 2W 

u = 1 + K2D,t, 

--oo 
+m 

-W 
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24 s. N. PUROErr 

If we now assume that to 9 tl (the jump diffusion model), then 

For xo and x1 we obtain 

xo = to exp - 2 W (’ - ’) (Singwi-Sjiila,nder formula) (46) 
[o% + (1 - BY1 

and 

5. Delayed Diffusion Model 

For the analysis of the quasi-elastic scattering let us discuss a delayed 
diffusion model. It is baaed upon the modification of ideas given in 
Vineyard‘s p a p +  and also in an unpublished work of Singwi. Let us 
divide the width function into two parts. 

(a) y( t )  = Ydiff(t) for (tc I t 5 00) 

(b) y ( t )  = Y B ( ~ )  for (0 < t I tc). 
and 

For diffusion, let us employ the following expression given by Viney- 
ard4 

or tC =- EBT (Einstein relation). re=- and D =- (49) 1 KBT 
7l MV MD 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



THE QUASI ELASTIC SCATTERING OF NEUTRONS 25 

The scattering law using the above width function in the time region 
t, to 00 is given by 

(50) 

The term outside the bracket is the Lorentzian term due to pure 
diffusion. Terms inside the bracket modifies this distribution. For 
t ,  = 0 we get the pure diffusion result. 

Therefore, one may write 

S ( K ,  0) = S&K, O )  f Sbomd(K,  0) (51) 
where tC 

Shund(K? w )  = - exp iot exp - K v R ( t )  dt. (52) 
2n 

-tc 

yR( t )  describes the motion of the atom in the time region excluding the 
diffusion interval. 

(i) Weak binding and (ii) Strong binding. 

Case I Weak Binding 

We shall consider two cases. 

In this case we can employ the gas mods1 yR( t )  with an effective tem- 

(53) 
1 .  yR( t )  = - - ( t t  + i2t2T,fr) 

perake T,,, 

2M 

--m 

where 

t: = t, Fz and a = (. + g) (zy. (56) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
0
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



26 9. N. PUBORIT 

On integrating, 

0 (57) 

@(z) = - exp - y2 dy = erf(z). 

0 

See Gr6bner and H0freiter.M 

expansion 
For tz -t 00 we obtain the gas result, since @(w) = 1. Employing the 

exp - z2 
@(z) = 1 - 

& Z  

We obtain a 8erk.a expanaion for Sbonnd(K, o) which gives the correc- 
tion to the standard gas formula 

+ (I; + +)*+' exp it>) 
1 

+ :)%+I 
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THE QUASI ELASTI0 SCATTERING O F  NEUTBONS 27 

Case 2 Strong Binding 

the phonon expanaion along the lines of Sj6landeF 
For yR(t)  we employ the harmonic approximation result. Undertaking 

+W 

-00 

Let us mite 
O0 Cn fl,,,(K,w) = c - 

n-0 2n 
where 

y e  shot  
C,, = 2exp - - A(0) 2 zero phonon 

2M 0 

-W 

n phonon.’ 

For w 2 2 one may employ the central limit theorem. Rewriting 
tc 
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28 S. N. PUROHIT 

We also approximate 

Therefore, 

with 

;Is shown for the weak binding case, 

For t ,  -+ 00 we obtain the result given in the Sjhlander’s paper. 
It must, however, be pointed out that a t  t = t ,  where the vibratory 

mode undergoes an abrupt transformation into the diffusive mode is 
physically not convincing. One may, therefore, have to develop a 
different model to describe the intermediate time region between the 
vibratory and diffusive modes. But then it is the crux of the problem. 

I n  a recent study Ardente et aL26 decomposed the width function y( t )  
into two parts: 

(i) y I ( t )  corresponding t o  a damped harmonic oscillator discussed by 

(6) yI I ( t )  corresponding to the Langevin diffusion model. See Viney- 
ChandrasekharZ7 and Wang and Uhlenbeck.28 

ard.4 

Undertaking the Fourier transform and the standard phonon expan- 
sion (involving the Bessel functions along the lines of Zemach and 
G l a ~ b e r ~ ~ ,  these authors have given an expression for S ( R ,  o) in a series 
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form involving two relaxation times tI and tII . The former describes the 
damping of harmonic modes and is given by the interatomic potential 
and the latter by the Einstein’s relation in term of the diffusion constant 
of the medium. 

In  contrast to the delayed diffusion model presented in this study 
Ardente e.t d.” assume the existence of diffusive and harmonic modes at 
all times. 

A discussion of various phenomenological models considered in sec- 
tion 3 has also been given by SjBlandeP in his recent review article. 

6. “Microscopic Diffusion Cooling” 

Two experimental facts emerge out from the cold neutron scattering 
experiments. 

1. Narrowing of the quasi-elastic line, that is the deviation of the plot 
of r (half width of the quasi-elastic line) versus Ra from a straight line. 

2. Temperature dependence of this deviation. Experiments of Larsson 
and Dahlborgal on the hydrogenous liquids have definitely established 
that this deviation increases with the decrease in temperature. 

In the light of above experimental observations one is tempted to 
speculate a “microscopic Wusion cooling” phenomenon arising due to 
the overlap of the kinetic and hydrodynamic regimes in fluids. 

It is of interest to note that one encounters similar facts in the descrip- 
tion of the macroscopic diffusion cooling phenomenon in the transport 
of neutrons in solids and liquids. Von Dardel and Sjostrandsl have dis- 
cussed this effect in describing the decay of a pulse of neutrons in a 
iinite moderating medium. BiondiS2 and Parker33 have considered the 
diffusion cooling effect in the discussion of the transport of electrons in a 
gas. The macroscopic diffusion cooling phenomenon is a consequence of 
mixing between thermalization and diffusion processes. Let us describe 
the macroscopic diffusion cooling. 

The asymptotic decay of a pulse of neutrons in a finite nonabsorbing 
medium (larger in size than the transport mean free path) is given by 

A = DB2 - CB‘. (75) 

In  the above equation A is decay constant, D is the diffusion coefficient 
of transport of neutrons, B is the geometrical buckling which defines the 
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size of the system and C is the W o n  cooling coefficient. The latter 
parameter is a measure of the mixing between neutron thermalization 
and diffusion processes. In  the case of pure diffusion of neutrons 
L = D P .  One may also define iZ and B as the Laplace and Fourier trans- 
form variables of time and space respectively in the linearised Boltzmann 
equation which describes the transport of neutrons. 

C may be expressed in terms of the relaxation time t, for the establish- 
ment of the Maxwellian velocity distribution of neutrons in a non-ab- 
sorbing and idnite medium, following N e b %  and Purohit.ss 

The relaxation time z increases with the increase in the degree of bin- 
ding of atoms in the system. Therefore, z and C will increase with the 
decrease in temperature. 

Let u8 now write r, the half width of the quasi-elastic line in terms of 
K 2  in the following form 

(77) r = DK2 - CK4. 

r and K are the Laplace and Fourier transform variables of time and 
space respectively in the microscopic transport equation. On the other 
hand, 1 and B are the W a r  transform variables in the macroscopic 
transport equation. Equations (77) and (75) describe the deviation from 
diffusion process on microscopic and macroscopic time scales. 

For the sake of further discussion if we compare Eqs. (31) and (77) we 
obtain an expression for C 

c = tp. (78) 

The similarity of two expressions for C in macroscopic and microscopic 
cases described by Eqs. (76) and (78) is very striking. It is of interest to 
note that Eq. (75) or (77) would qualitatively describe the narrowing 
effect and its temperature dependence. 

In  order to demonstrate the existence of the “microscopic diffusion 
cooling” phenomenon conclusively one will have to calculate 

+m 

Lt t-tm 

and demonstrate that 

(v(K2,  f = CO)) = (v (K2 = 0, t = CO)) (1 - CK2 + ..-}. (80) 
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7. Conclusion 

I n  this study we have presented a &cussion of various phenomenologi- 
cal models in the frame work of general formalism involving a generalized 
damping factor F(K, w). It has been emphasized that this factor governs 
the width of the quasi-electric scattering line aa a function of a. We 
have also pointed out that the relaxation times introduced by different 
authors may not have the same physical meaning. For example, the 
relaxation time introduced by Kadanoff and Martin9 may refer to the 
collisions of “lomfd” nature. On the other hand, the relaxation times 
of N e b  and GhataklO and of Gibbs and Ferziger” correspond to colli- 
sions of ‘‘10~8 less” nature. For a discussion of collisions of “lossful” and 
“loss less” nature, see Chester.% 

I n  addition to the discussion of various phenomenological models, we 
have derived S(K,  o) for a delayed diffusion model and have also extend- 
ed the zero phonon result for S(K, w) of the Singwi-Sjolander models, 
80 as to include one phonon contribution. 

Alternative to the use of these models is to numerically generate 
G(r, t) function as pioneered by Rahman3’ for the Lennard-Jones poten- 
tial for the liquid Argon and extended by Paskin and Rahmans for the 
long range oscillatory potential for the liquid metal Na. The discussion 
of these numerical results in terms of the dynamical modes in fluids and 
the construction of S(K,  w) from calculated Q(r, t ) ,  t o  analyze the neutron 
scattering data constitute important areas of investigation. 
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